If it's not what You are looking for type in the equation solver your own equation and let us solve it.
83x^2-20x=0
a = 83; b = -20; c = 0;
Δ = b2-4ac
Δ = -202-4·83·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-20}{2*83}=\frac{0}{166} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+20}{2*83}=\frac{40}{166} =20/83 $
| 1/2(3x-2)(5x+4)=A | | (x+3)/8-(x-3)/10=(x-5)/4-1* | | 0.125x=30 | | 7-7(5-n)=-84 | | 7x-4(11-2x)=14 | | -3(2x-5)=-11x+35 | | 90=1.5t2+8 | | (2m-1)-3/5m=6/5(4-3m | | 35=t+13 | | 3^{x^2-1}=134 | | 5(3p+1)=4(2p+5) | | (-7.4)+b=9.11 | | 4x-(x-5)=3x-5 | | 10x+4+x=4+5x-3 | | 324=9x^2 | | 6-(3x-4)=-5x+2 | | -8(4x-2)=-4(-4+8x) | | 7n(6n+3)=0 | | 12x-1=9x+32 | | 4x+24=6×+18 | | -8x^2+72x+-162=0 | | 3n+4=n+5X2 | | X+1+2x+2=78 | | -7=b-4/3 | | A=5b=12 | | x/8=6/15 | | 5x+5=6x+27 | | x/8=16/6 | | 6(3x+7)+2x=-18 | | t-40.5=3.7 | | 19x-4=80 | | -9+k/7=-7 |